Respuesta :

Answer:

The Factored form is

[tex]f(x)=(x-1)(x-3-\sqrt{13} )(x-3+\sqrt{13} )[/tex]

Step-by-step explanation:

Given;

[tex]f(x)=x^{3} -7\times x^{2} +2x+4[/tex]

To solve for x  we factorize the right side  of

[tex]f(x)=x^{3} -7\times x^{2} +2x+4[/tex]

Let Substitute x for various values to check whether remainder is zero.

[tex]f(1)=1^{3} -7\times 1^{2} +2\times 1+4[/tex]

Hence[tex]x-1[/tex] is a factor of the function.

Do synthetic division to find the quotient

[tex]1[/tex]    [tex]1[/tex]  [tex]-7[/tex]  [tex]2[/tex]   [tex]4[/tex]

          [tex]1[/tex] [tex]-6[/tex] [tex]-4[/tex]

  _____________________

      [tex]1[/tex]  [tex]-6[/tex] [tex]-4[/tex] [tex]0[/tex]

We get remainder 0 and quotient as,

[tex]x^{2} -(6\times x)-4[/tex]

By using Quadratic Formula;

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac } }{2a}[/tex]

Plug 'a' , 'b' and 'c' value from [tex]x^{2} -(6\times x)-4[/tex] equation,

[tex]x=\frac{-(-6)\pm\sqrt{-6^{2}-(4\times1\times -4 )} }{2\times1}[/tex]

[tex]x=\frac{6\pm\sqrt{36+16 } }{2}[/tex]

[tex]x=\frac{6\pm\sqrt{52} }{2}[/tex]

[tex]x=3+\sqrt{13}[/tex] and [tex]x=3-\sqrt{13}[/tex]

The values of 'x' are [tex]1[/tex] , [tex]3+\sqrt{13}[/tex] and   [tex]3-\sqrt{13}[/tex]

So the Factored form is

[tex]f(x)=(x-1)(x-3-\sqrt{13} )(x-3+\sqrt{13} )[/tex]