Answer:
2.55383611 km/s
[tex]4.54872\times 10^{19}\ J[/tex]
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of the Earth = 5.972 × 10²⁴ kg
[tex]\rho[/tex] = Density of asteroid = 3.33 g/cm³ = 3330 kg/m³
r = Distance between asteroid and Earth = 75900 miles
D = Diameter of asteroid = 2 km
R = Radius = [tex]\frac{D}{2}=1\ km[/tex]
V = Volume = [tex]\frac{4}{3}\pi R^3[/tex] (assumed shape is a sphere)
Converting to m
[tex]1\ mile=1609.34\ m[/tex]
[tex]75900\ mile=75900\times 1609.34\ m=122148906\ m[/tex]
The potential and kinetic energies are conserved
[tex]P_i=K_f+P_f\\\Rightarrow 0=\frac{1}{2}mv^2-\frac{GMm}{r}\\\Rightarrow v=\sqrt{\frac{2GM}{r}}\\\Rightarrow v=\sqrt{\frac{2\times 6.67\times 10^{-11}\times 5.972\times 10^{24}}{122148906}}\\\Rightarrow v=2553.83611\ m/s=2.55383611\ km/s[/tex]
The speed of the asteroid at closest approach is 2.55383611 km/s
Kinetic energy is given by
[tex]K=\frac{1}{2}mv^2\\\Rightarrow K=\frac{1}{2}\times \rho\times V\times v^2\\\Rightarrow K=\frac{1}{2}\times 3330\times \frac{4}{3}\pi 1000^3\times 2553.83611^2\\\Rightarrow K=4.54872\times 10^{19}\ J[/tex]
The kinetic energy of the asteroid is [tex]4.54872\times 10^{19}\ J[/tex]