Respuesta :

Answer:

[tex]P=25.97\ units[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

we know that

The perimeter of triangle PST is equal to

[tex]P=PT+PS+TS[/tex]

step 1

Find the length PS

In the right triangle PST

[tex]sin(48\°)=\frac{PT}{PS}[/tex] ---> opposite side angle of 48 degrees divide by the hypotenuse

substitute the given values

[tex]sin(48\°)=\frac{8}{PS}[/tex]

Solve for PS

[tex]PS=\frac{8}{sin(48\°)}[/tex]

[tex]PS=10.765\ units[/tex]

step 2

Find the length TS

In the right triangle PST

[tex]cos(48\°)=\frac{TS}{PS}[/tex] ---> adjacent side angle of 48 degrees divided by the hypotenuse

substitute the given values

[tex]cos(48\°)=\frac{TS}{10.77}[/tex]

Solve for TS

[tex]TS=cos(48\°)(10.765)[/tex]

[tex]TS=7.203\ units[/tex]

step 3

Find the perimeter

[tex]P=PT+PS+TS[/tex]

we have

[tex]PT=8\ units[/tex]

[tex]PS=10.765\ units[/tex]

[tex]TS=7.203\ units[/tex]

substitute

[tex]P=8+10.765+7.203=25.968\ units[/tex]

Ver imagen calculista