. A block of mass 4.0 kg on a spring has displacement as a function of time given by, x (t) = (1.0 cm) cos [(2.0 rad/s) t + 0.25] Determine: (i) The position of the block at 0.5 s. (0.31 cm) (ii) The period of the motion. (3.14 s) (iii) The spring constant of the spring. (16.0 N/m) (iv) The maximum speed of the block. (0.02 m/s) (v) The maximum force on the block. (0.16 N)

Respuesta :

Answer and Explanation:

1. Evaluate the function x(t) at t=0.5

[tex]x(t)=1cos(2t+0.25)\\x(0.5)=cos(2*0.5+0.25)=cos(1+0.25)=cos(1.25)=0.3153223624\approx0.31cm[/tex]

2. The period of motion T can be calculated as:

[tex]T=\frac{2\pi}{\omega}[/tex]

Where:

[tex]\omega=2rad/s[/tex]

So:

[tex]T=\frac{2\pi}{2}=\pi\approx3.14s[/tex]

3. The angular frequency can be expressed as:

[tex]\omega=\sqrt{\frac{k}{m} }[/tex]

Solving for k:

[tex]k=(\omega)^2*m=(2)^2*4=4*4=16\frac{N}{m}[/tex]

4. Find the derivate of x(t):

[tex]\frac{dx}{dt} =v(t)=-2sin(2t+0.25)[/tex]

Now, the sine function reach its maximum value at π/2 so:

[tex]2t+025=\frac{\pi}{2}[/tex]

Solving for t:

[tex]t=\frac{\frac{\pi}{2} -0.25}{2} =0.6603981634s[/tex]

Evaluating v(t) for 0.6603981634:

[tex]v(0.6603981634)=-2sin(2*0.6603981634+0.25)=-2sin(\frac{\pi}{2} )=-2*1=2[/tex]

So the maximum speed of the block is:

[tex]v(0.6603981634)=2cm/s=0.02m/s[/tex]

In the negative direction of x-axis

5. The force is given by:

[tex]F=kx[/tex]

The cosine function reach its maximum value at 2π so:

[tex]2t+0.25=2\pi[/tex]

Solving for t:

[tex]t=\frac{2\pi-0.25}{2} =3.016592654s[/tex]

Evaluating x(t) for 3.016592654:

[tex]x(3.016592654)=cos(2*3.016592654+0.25)=cos(2\pi)=1cm=0.01m[/tex]

Therefore the the maximum force on the block is:

[tex]F=16*0.01=0.16N[/tex]