Exactly 15.5 mL of water at 23.0 °C is added to a hot iron skillet. All of the water is converted to steam at 100.0°C. The mass of the skillet is 1.20 kg. What is the change in temperature of the skillet?

Respuesta :

Answer:

[tex]\Delta T\approx 72.5^{\circ}C[/tex]

Explanation:

Given:

Volume of water, [tex]V=15.5\times 10^{-3}\ L=15.5\times 10^{-3}\ m^3[/tex]

initial temperature of water, [tex]T_i=23^{\circ}C[/tex]

final temperature of water before forming steam, [tex]T_f=100^{\circ}C[/tex]

mass of hot skillet, [tex]m_s=1.2\ kg[/tex]

Usually skillets are made of cast iron and cast iron has a specific heat capacity of :

[tex]c_s=460\ J.kg^{-1}.K^{-1}[/tex]

Specific heat of water, [tex]c_w= 4186\ J.kg^{-1}.K^{-1}[/tex]

Latent heat of vaporization of water, [tex]L_v=2.26\times 10^6\ J.kg^{-1}.K^{-1}[/tex]

Now, mass of water:

[tex]\rm mass=density\times volume[/tex]

[tex]m_w=1000\times 15.5\times 10^{-3}[/tex]

[tex]m_w=15.5\times 10^{-3}\ kg[/tex]

Quantity of heat absorbed by the water of 23 degree Celsius to a point just before steaming:

[tex]Q_w=m_w.c_w.(T_f-T_i)[/tex]

[tex]Q_w=15.5\times 10^{-3}\times 4186\times (100-23)[/tex]

[tex]Q_w=4995.99\ J[/tex]

Quantity of heat absorbed by the water to vapourize:

[tex]Q_v=m_w.L_v[/tex]

[tex]Q_v=15.5\times 10^{-3}\times (2.26\times 10^6)[/tex]

[tex]Q_v=35030\ J[/tex]

∴Total heat lost by the skillet:

[tex]Q=Q_w+Q_v[/tex]

[tex]Q=40025.99\ J[/tex]

For change in temperature:

[tex]Q=m_s.c_s.\Delta T[/tex]

[tex]\Delta T=\frac{Q}{m_s.c_s}[/tex]

[tex]\Delta T=\frac{40025.99}{1.2\times 460}[/tex]

[tex]\Delta T\approx 72.5^{\circ}C[/tex]