Answer:
+1,- 1, +1, -1, +1
Step-by-step explanation:
Given sequence : [tex]\ a_n[/tex] = [tex]-1^{n-1}[/tex]
where [tex]\ a_n[/tex] represents the [tex]n^{th}[/tex] term of the sequence.
⇒The first term is obtained by substituting n=1, the second term is obtained by substituting n=2 and so on...
[tex]\ a_1[/tex] = [tex]-1^{1-1}[/tex] = [tex]-1^{0}[/tex] = +1
[tex]\ a_2[/tex] = [tex]-1^{2-1}[/tex] = [tex]-1^{1}[/tex] = -1
[tex]\ a_3[/tex] = [tex]-1^{3-1}[/tex] = [tex]-1^{2}[/tex] = +1
[tex]\ a_4[/tex] = [tex]-1^{4-1}[/tex] = [tex]-1^{3}[/tex] = -1
[tex]\ a_5[/tex] = [tex]-1^{5-1}[/tex] = [tex]-1^{4}[/tex] = +1