Answer:
Claim : if the new button's mean lifetime exceeds 1210 hours.
[tex]H_0:\mu = 1210\\H_a:\mu > 1210[/tex]
Sample mean = [tex]\bar{x}=1274.2[/tex]
Sample standard deviation s = 114
n = 23
Since n < 30 and sample standard deviation is given .
So, we will use t test
Formula : [tex]t=\frac{x-\mu}{\frac{s}{\sqrt{n}}}}[/tex]
Substitute the values :
[tex]t=\frac{1274.2-1210}{\frac{114}{\sqrt{23}}}[/tex]
[tex]t=2.7008[/tex]
degree of freedom = n-1 = 23-1 =22
confidence level = 95%
Significance level = 5%
[tex]t_{df,\frac{\alpha}{2}}=t_{22,\frac{0.05}{2}}=1.7170[/tex]
t calculated > t critical
So, we failed to accept null hypothesis
Thus the new button's mean lifetime exceeds 1210 hours.