Let θ
θ
(in radians) be an acute angle in a right triangle and let x
x
and y
y
, respectively, be the lengths of the sides adjacent to and opposite θ
θ
. Suppose also that x
x
and y
y
vary with time.
At a certain instant x=8
x
=
8
units and is increasing at 7
7
unit/s, while y=8
y
=
8
and is decreasing at 14
1
4
units/s.
How fast is θ
θ
changing at that instant?

Respuesta :

Answer:

θ is decreasing at the rate of [tex]\frac{21}{16}[/tex] units/sec

or [tex]\frac{d}{dt}[/tex](θ) = [tex]\frac{-21}{16}[/tex]

Step-by-step explanation:

Given :

Length of side opposite to angle θ is y

Length of side adjacent to angle θ is x

θ is part of a right angle triangle

At this instant,

x =  8 , [tex]\frac{dx}{dt}[/tex] = 7

( [tex]\frac{dx}{dt}[/tex] denotes the rate of change of x with respect to time)

y = 8 , [tex]\frac{dy}{dt}[/tex] = -14

( The negative sign denotes the decreasing rate of change )

Here because it is a right angle triangle,

tanθ = [tex]\frac{y}{x}[/tex]-------------------------------------------------------------------1

At this instant,

tanθ = [tex]\frac{8}{8}[/tex] = 1

Therefore θ = π/4

We differentiate equation (1) with respect to time in order to obtain the rate of change of θ or [tex]\frac{d}{dt}[/tex](θ)

[tex]\frac{d}{dt}[/tex] (tanθ) = [tex]\frac{d}{dt}[/tex] (y/x)

( Applying chain rule of differentiation for R.H.S as y*1/x)

[tex]sec^{2}[/tex]θ[tex]\frac{d}{dt}[/tex](θ) = [tex]\frac{1}{x}[/tex][tex]\frac{dy}{dt}[/tex] - [tex]\frac{y}{x*x}[/tex][tex]\frac{dx}{dt}[/tex]-----------------------2

Substituting the values of x , y , [tex]\frac{dx}{dt}[/tex] , [tex]\frac{dy}{dt}[/tex] , θ at that instant in equation (2)

2[tex]\frac{d}{dt}[/tex](θ) = [tex]\frac{1}{8}[/tex]*(-14)- [tex]\frac{8}{8*8}[/tex]*7

[tex]\frac{d}{dt}[/tex](θ) = [tex]\frac{-21}{16}[/tex]

Therefore θ is decreasing at the rate of [tex]\frac{21}{16}[/tex] units/sec

or  [tex]\frac{d}{dt}[/tex](θ) = [tex]\frac{-21}{16}[/tex]