Answer
gives,
mass of the rocket = M = 875 Kg
speed of the rocket before explosion (V) = 6.55 x 10³ m/s
rocket divide into two parts
mass of first part (m₁) = 875/2 = 437.5 Kg
mass of second part (m₂) = 437.5 Kg
relative speed between two section
v₁ - v₂ = 2.5 x 10³ m/s................(1)
using energy of conservation
M V = m₁ v₁ + m₂ v₂
875 x 6.55 x 10³ = 437.5 (v₁ + v₂)
v₁ + v₂ = 13.1 x 10³......................(2)
adding equation (1) and (2)
2v₁ = 15.6 x 10³ m/s
v₁ = 7.8 x 10³ m/s
v₂ = 5.3 x 10³ m/s
b) Energy supplied by explosion
E = Final energy - initial energy
[tex]E = \dfrac{1}{2}m(v_1^2+v_2^2) - \dfrac{1}{2}MV^2[/tex]
[tex]E = \dfrac{1}{2}\times 437.5((7.8 \times 10^3)^2+(5.3\times 10^3)^2) - \dfrac{1}{2}\times 875\times (6.55 \times 10^3)^2[/tex]
E = 683 x 10⁶ J