Respuesta :

Answer:

(d) x = 5, y = 2 are the correct values of the given system.

Step-by-step explanation:

Here, in the given Matrix expression,

By matrix multiplication with a scalar, we get

[tex]\frac{1}{2} ( x +3)  - 3(-1) = 7[/tex]

and [tex]\frac{1}{2}(8)  -3(y +1)  = -5[/tex]

Solving the above expression, we get

[tex]\frac{1}{2} ( x +3) + 3 = 7  \implies \frac{1}{2} ( x +3) = 4\\or, (x+3) = 2(4)  = 8\\\implies x = 8-3 = 5[/tex]

or, x  = 5

Solving for y, we get:

[tex]\frac{1}{2}(8)  -3(1) -3(y +1)  = -5  \implies 4  -3y - 3 = -5\\or, 1 + 5 = 3y\\or, 6 = 3y \implies y =  \frac{6}{3} = 2\\[/tex]

or, y  =  2

Hence, x = 5, y = 2 are the correct values of the given system.