In the matrix equation below, what are the values of x and y?

Answer:
(d) x = 5, y = 2 are the correct values of the given system.
Step-by-step explanation:
Here, in the given Matrix expression,
By matrix multiplication with a scalar, we get
[tex]\frac{1}{2} ( x +3) - 3(-1) = 7[/tex]
and [tex]\frac{1}{2}(8) -3(y +1) = -5[/tex]
Solving the above expression, we get
[tex]\frac{1}{2} ( x +3) + 3 = 7 \implies \frac{1}{2} ( x +3) = 4\\or, (x+3) = 2(4) = 8\\\implies x = 8-3 = 5[/tex]
or, x = 5
Solving for y, we get:
[tex]\frac{1}{2}(8) -3(1) -3(y +1) = -5 \implies 4 -3y - 3 = -5\\or, 1 + 5 = 3y\\or, 6 = 3y \implies y = \frac{6}{3} = 2\\[/tex]
or, y = 2
Hence, x = 5, y = 2 are the correct values of the given system.