If the exponential parent function,
f(x) = 3^xis reflected across the y-a:
and then translated down 4 units,
what is the resulting function?

Respuesta :

Answer: [tex]f(x) =3^{-x}-4[/tex]

Step-by-step explanation:

Some transformations for a function f(x) are shown below:

If [tex]f(x)+k[/tex], the function is translated up "k" units.

If [tex]f(x)-k[/tex], the function is translated down "k" units.

If [tex]-f(x)[/tex], the function is reflected across the x-axis.

If [tex]f(-x)[/tex], the function is reflected across the y-axis.

Therefore, knowing those transformations and given the exponential parent function:

[tex]f(x) = 3^x[/tex]

If it is reflected across the y-axis and the it is  translated down 4 units, we can determine that the resulting function is:

[tex]f(x) =3^{-x}-4[/tex]