Answer: [tex]f(x) =3^{-x}-4[/tex]
Step-by-step explanation:
Some transformations for a function f(x) are shown below:
If [tex]f(x)+k[/tex], the function is translated up "k" units.
If [tex]f(x)-k[/tex], the function is translated down "k" units.
If [tex]-f(x)[/tex], the function is reflected across the x-axis.
If [tex]f(-x)[/tex], the function is reflected across the y-axis.
Therefore, knowing those transformations and given the exponential parent function:
[tex]f(x) = 3^x[/tex]
If it is reflected across the y-axis and the it is translated down 4 units, we can determine that the resulting function is:
[tex]f(x) =3^{-x}-4[/tex]