Explanation:
Let [tex]M[/tex] be the mass of earth.
Let [tex]R[/tex] be the radius of earth.
Let [tex]G[/tex] be the universal gravitational constant.
Given,
[tex]M=5.96\times 10^{24}Kg[/tex]
[tex]R=6.37\times 10^{6}m[/tex]
[tex]G=6.67259 \times 10^{-11}[/tex][tex]Nm^{2}Kg^{-2}[/tex]
Let [tex]g[/tex] be the acceleration due to gravity.
Then,[tex]g=\dfrac{GM}{R^{2}}[/tex]
[tex]g=\frac{6.67259 \times 10^{-11}\times 5.96\times 10^{24}}{(6.37\times 10^{6})^{2}}[/tex]
[tex]g=9.79ms^{-2}[/tex]
A object of mass [tex]m[/tex] at the surface of earth experiences a force [tex]mg[/tex]