the total surface area of a solid cylinder is 21cm if the curved surface area of the solid cylinder is two - third of its total surface area find its radius and height​

Respuesta :

Answer:

The radius of cylinder is 1.05 cm and

The height of cylinder is 2.11 cm

Step-by-step explanation:

Given as :

The total surface area of cylinder = 21 cm

The curved surface area of cylinder = [tex]\frac{2}{3}[/tex] of the total surface area

I.e The curved surface area of cylinder = [tex]\frac{2}{3}[/tex] × 21 = 14 cm

The total surface area of cylinder = 2 [tex]\pi[/tex] r h + 2 [tex]\pi[/tex] r²

Where r is the radius and h is the height of cylinder

Or, 2 [tex]\pi[/tex] r h + 2 [tex]\pi[/tex] r² = 21 cm

Or,  [tex](2\times \Pi \times r\times h) + (2\times \Pi\times r^{2} )[/tex] = 21 cm   ....a

Again ∵ The curved surface area of cylinder = 2 [tex]\pi[/tex] r h

Where r is the radius and h is the height of cylinder

Or, 2 [tex]\pi[/tex] r h = 14 cm    . ...b

so . put the value of a into b

I.e 14 cm + [tex](2\times \Pi\times r^{2} )[/tex] = 21 cm  

Or,  [tex](2\times \Pi\times r^{2} )[/tex] = 21 cm - 14 cm

Or, [tex](2\times \Pi\times r^{2} )[/tex] = 7

so , r² = [tex]\frac{7}{2\pi }[/tex]

∴    r² =  [tex]\frac{49}{44}[/tex]

I.e  r = [tex]\sqrt{\frac{49}{44} }[/tex]

So, radius = [tex]\frac{7}{\sqrt{44} }[/tex]  cm

or,   r = 1.05 cm

Put the value of r in eq b

2 [tex]\pi[/tex] r h = 14 cm

Or,  2 [tex]\pi[/tex] ×  [tex]\frac{7}{\sqrt{44} }[/tex]  × h = 14 cm

So, h = [tex]\frac{\sqrt{44} }{\pi }[/tex]

Or, h = 2.11 cm

Hence The radius of cylinder is 1.05 cm and The height of cylinder is 2.11 cm  Answer