Respuesta :

Answer:

[tex]\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{I^{2} }+\frac{1}{4\times(pie)\times\text{E}} \times\frac{-q}{I^{2} }[/tex]

Explanation:

As given point p is equidistant from both the charges

It must be in the middle of both the charges

Assuming all 3 points lie on the same line

Electric Field due a charge q at a point ,distance r away

[tex]=\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{r^{2} }[/tex]

Where

  • q is the charge
  • r is the distance
  • [tex]E[/tex] is the permittivity of medium

Let electric field due to charge q be F1 and -q be F2

I is the distance of P from q and also from charge -q

F1[tex]=\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{I^{2} }[/tex]

F2[tex]=\frac{1}{4\times(pie)\times\text{E}} \times\frac{-q}{I^{2} }[/tex]

F1+F2=[tex]\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{I^{2} }+\frac{1}{4\times(pie)\times\text{E}} \times\frac{-q}{I^{2} }[/tex]