Answer:
35 units
Step-by-step explanation:
The distance formula is:
[tex]D=\sqrt{(y_2- y_1)^2 + (x_2 - x_1)^2}[/tex]
Where D is the distance
[tex]x_1[/tex] is the first coordinate point's x component (-4)
[tex]y_1[/tex] is the firsst coordinate point's y component (-15)
[tex]x_2[/tex] is the second coordinate point's x component (-4)
[tex]y_2[/tex] is the second coordinate point's y component (20)
Now, we substitute into distance formula and get out answer:
[tex]D=\sqrt{(y_2- y_1)^2 + (x_2 - x_1)^2}\\D=\sqrt{(20--15)^2 + (-4--4)^2}\\D=\sqrt{(35)^2+0^2} \\D=\sqrt{35^2} \\D=35[/tex]
Hence, the distance is 35 units