Respuesta :

Answer:

[tex]1) -\frac{3}{4} +\frac{3}{4}    =0[/tex] TRUE

[tex]2) -\frac{3}{4} + 0    =\frac{3}{4} [/tex] TRUE

[tex]3) -\frac{3}{4}  + \frac{3}{4}    =\frac{3}{4} + (-\frac{3}{4}) [/tex] TRUE

[tex]4) -\frac{3}{4}  - \frac{3}{4}    =-(\frac{3}{4} + \frac{3}{4}) [/tex] TRUE

[tex]5) -\frac{3}{4}  + \frac{3}{4}    =\frac{3}{4} - (-\frac{3}{4}) [/tex] FALSE

[tex]6) \frac{3}{4}  - \frac{3}{4}    =\frac{3}{4} + (-\frac{3}{4}) [/tex] FALSE,

Step-by-step explanation:

ADDITIVE INVERSE:

Given number B is the additive inverse of a given number A if:

A + B =  0 ⇒  A = - B

Now here, the given statements are:

[tex]1) -\frac{3}{4} +\frac{3}{4}    =0[/tex]

TRUE, as the additive inverse of (3/4) is (-3/4).

[tex]2) -\frac{3}{4} + 0    =\frac{3}{4} [/tex]

TRUE, as the zero is the zero element ⇒ A+0 = A.

[tex]3) -\frac{3}{4}  + \frac{3}{4}    =\frac{3}{4} + (-\frac{3}{4}) [/tex]

TRUE, as the addition of the fraction is ASSOCIATIVE  ⇒ A+B = B+A.

[tex]4) -\frac{3}{4}  - \frac{3}{4}    =-(\frac{3}{4} + \frac{3}{4}) [/tex]

TRUE, as - A - B  = - (A+B)

[tex]5) -\frac{3}{4}  + \frac{3}{4}    =\frac{3}{4} - (-\frac{3}{4}) [/tex]

FALSE, as A - (-B)  = A. + B

[tex]6) \frac{3}{4}  - \frac{3}{4}    =\frac{3}{4} + (-\frac{3}{4}) [/tex]

FALSE, as the (3/4) is the additive inverse of (-3/4)  ⇒ A- B = 0.