Answer:
Part a)
[tex]\alpha = 782.6 rad/s^2[/tex]
Part B)
[tex]\omega = 587 rad/s[/tex]
Part c)
[tex]a_t = 24.3 m/s^2[/tex]
Explanation:
Part a)
As we know that
[tex]a = R \alpha[/tex]
so we will have
[tex]a = 1.80 m/s^2[/tex]
[tex]R = 0.230 cm[/tex]
[tex]\alpha = \frac{a}{R}[/tex]
[tex]\alpha = \frac{1.80}{0.230 \times 10^{-2}}[/tex]
[tex]\alpha = 782.6 rad/s^2[/tex]
Part B)
Angular speed of the yo-yo
[tex]\omega = \alpha t[/tex]
so we have
[tex]\omega = 782.6 \times 0.750[/tex]
[tex]\omega = 587 rad/s[/tex]
Part c)
Tangential acceleration is given as
[tex]a_t = R \alpha[/tex]
[tex]a_t = (3.10 \times 10^{-2})(782.6)[/tex]
[tex]a_t = 24.3 m/s^2[/tex]