Evaluate Z C y 2 dx + z 2 dy + (1 − x 2 ) dz where C is the quarter of the circle of radius 1 in the xz–plane with center at the origin in the quadrant x ≥ 0, z ≤ 0, oriented counterclockwise when viewed from the positive y–axis, that is, looking in the −y direction.

Respuesta :

Answer:

[tex]\int_Cy^2dx+z^2dy+(1-x^2)dz=\dfrac{1}{3}[/tex]

Step-by-step explanation:

To find: [tex]I=\int_Cy^2dx+z^2dy+(1-x^2)dz[/tex]

where, C is the quarter of the circle of radius 1 in the xz plane.

The center at origin.

  • First write quarter circle in parametric form.

[tex]x=\cos t[/tex]

[tex]z=\sin t[/tex]

where, [tex]0\leq t\leq \dfrac{\pi}{2}[/tex] because it is quarter circle.

The circle oriented counterclockwise when viewed from the positive y–axis.

Therefore, [tex]y=0[/tex]

If  x = cos t, then dx = -sin t dt

If  z = sin t, then dz = cos t dt

If y = 0 , then dy = 0

Substitute the value into integral.

[tex]I=\int_0^{\pi/2}(0^2(-\sin tdt)+(\sin^2t)(0dt)+(1-\cos^2t)(\cos tdt))[/tex]

[tex]I=\int_0^{\pi/2}\sin^2t\cos tdt[/tex]

Let [tex]\sin t=\theta [/tex]

[tex]\cos t dt=d\theta[/tex]

[tex]t\rightarrow 0, \theta \rightarrow 0[/tex]

[tex]t\rightarrow \dfrac{\pi}{2},\theta \rightarrow 1[/tex]

Change the integral limit and variable

[tex]I=\int_0^1\theta^2d\theta[/tex]

[tex]I=\dfrac{\theta^3}{3}|_0^1[/tex]

[tex]I=\dfrac{1}{3}(1^3-0^3)[/tex]

[tex]I=\dfrac{1}{3}[/tex]

Hence, the value of integral is [tex]\dfrac{1}{3}[/tex]