Respuesta :

Answer:

[tex]\int\frac{x^{4}}{x^{4} -1}dx = x + \frac{1}{4} ln(x-1) - \frac{1}{4} ln(x+1)-\frac{1}{2} arctanx + c[/tex]

Step-by-step explanation:

[tex]\int\frac{x^{4}}{x^{4} -1}dx[/tex]

Adding and Subtracting 1 to the Numerator

[tex]\int\frac{x^{4} - 1 + 1}{x^{4} -1}dx[/tex]

Dividing Numerator seperately by [tex]x^{4} - 1[/tex]

[tex]\int 1 + \frac{1}{x^{4}-1 }\, dx[/tex]

Here integral of 1 is x +c1 (where c1 is constant of integration

[tex]x + c1 + \int\frac{1}{(x-1)(x+1)(x^{2}+1)}\, dx[/tex]----------------------------------(1)

We apply method of partial fractions to perform the integral

[tex]\frac{1}{(x-1)(x+1)(x^{2}+1)}[/tex] = [tex]\frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x^{2} + 1}[/tex]------------------------------------------(2)

[tex]\frac{1}{(x-1)(x+1)(x^{2}+1)} = \frac{A(x+1)(x^{2} +1) + B(x-1)(x^{2} +1) + C(x-1)(x+1)}{(x-1)(x+1)(x^{2} +1)}[/tex]

1 = [tex]A(x+1)(x^{2} +1) + B(x-1)(x^{2} +1) + C(x-1)(x+1)[/tex]-------------------------(3)

Substitute x= 1 , -1 , i in equation (3)

1 = A(1+1)(1+1)

A = [tex]\frac{1}{4}[/tex]

1 = B(-1-1)(1+1)

B = [tex]-\frac{1}{4}[/tex]

1 = C(i-1)(i+1)

C = [tex]-\frac{1}{2}[/tex]

Substituting A, B, C in equation (2)

[tex]\int\frac{x^{4}}{x^{4} -1}dx[/tex] = [tex]\int\frac{1}{4(x-1)} - \frac{1}{4(x+1)} -\frac{1}{2(x^{2}+1) }[/tex]

On integration

Here [tex]\int \frac{1}{x}dx = lnx and \int\frac{1}{x^{2}+1 } dx = arctanx[/tex]

[tex]\int\frac{x^{4}}{x^{4} -1}dx[/tex] = [tex]\frac{1}{4} ln(x-1)[/tex] - [tex]\frac{1}{4} ln(x+1)[/tex] - [tex]\frac{1}{2} arctanx[/tex] + c2---------------------------------------(4)

Substitute equation (4) back in equation (1) we get

[tex]x + c1 + \frac{1}{4} ln(x-1) - \frac{1}{4} ln(x+1) - \frac{1}{2} arctanx + c2[/tex]

Here c1 + c2 can be added to another and written as c

Therefore,

[tex]\int\frac{x^{4}}{x^{4} -1}dx = x + \frac{1}{4} ln(x-1) - \frac{1}{4} ln(x+1)-\frac{1}{2} arctanx + c[/tex]