A scientist begins with 250 grams of a radioactive substance. After 250 minutes, the sample has decayed to 36 grams. Write an exponential equation f(t) representing this situation. (Let f be the amount of radioactive substance in grams and t be the time in minutes.)

Respuesta :

Answer:

f(t) = 250[tex]e^{-0.007752t}[/tex]

Step-by-step explanation:

Let f(t) = [tex]\alpha[/tex][tex]e^{\beta t }[/tex]

where f is the amount of radioactive substance in grams

and t is the time in minutes

initially (at t=0), f = 250 grams

f(0) = 250 grams

⇒[tex]\alpha[/tex][tex]e^{0\beta}[/tex] = 250

⇒[tex]\alpha[/tex][tex]e^{0}[/tex] = 250

⇒[tex]\alpha[/tex] = 250 grams {∵[tex]e^{0} = 1[/tex]}

⇒f(t) = 250[tex]e^{\beta t }[/tex]

At t = 250 minutes, f = 36 grams

f(250) = 36 grams

⇒250[tex]e^{250\beta}[/tex] = 36

⇒[tex]e^{250\beta}[/tex] = [tex]\frac{36}{250}[/tex] = 0.144

⇒250[tex]\beta[/tex] = ㏑ 0.144 = -1.938

⇒[tex]\beta[/tex] = -[tex]\frac{1.938}{250}[/tex] = -0.007752 [tex]min^{-1}[/tex]

f(t) = 250[tex]e^{-0.007752t}[/tex]