Sand falls from a conveyor belt at a rate of 14 m cubed divided by min onto the top of a conical pile. The height of the pile is always​ three-eighths of the base diameter. How fast are the height and the radius changing when the pile is 5 m​ high?

Respuesta :

Answer:7.16 cm/min or 0.0716 min.

Explanation:

From the equation the parameters given are; rate= 14m^-3/min, height of the pile,h= 3/8, rate when the pile is 5m high= ??.

d= diameter, r= radius. From the definition of diameter, diameter, d=2× radius, r(that is, 2r)

h= 3/8×d = 3/8(2r)= 3/4 × r

r= 4/3 × h

V= 1/3×πr^2×h ---------------------(1).

V= 1/3×π×[4/3h]^2×h

V= 16/27×π×h^3

Differentiate dV with respect to time, t;

dV/dt= 3(16)/27 × π ×h^2 ×dh/dt.

dV/dt = 16/9×π×h^2 × dh/dt

Then we differentiate V implicitly with respect to time,t

14=16/9×π[5]^2×dh/dt

dh/dt = 10× 9/400π

dh/dt= 45/200π (m/min)

dh/dt= 0.0716 m/min.

Conversion to cm/min

= dh/dt= 4500/200π (cm/min)

dh/dt= 1125/50π

dh/dt= 7.16 cm/min.

The height is changing at a rate of 0.1 m/min whine the radius is changing at a rate of 0.133 m/min.

Given that h = 5 m, dV/dt = 14 m³/min,

h = (3/8)d = (3/8)*2r

h = 3r/4; r = 4h/3

a)

[tex]Volume\ of\ cone:\\\\V=\frac{1}{3} \pi r^2h\\\\V=\frac{1}{3} \pi(\frac{4}{3}h )^2h\\\\V=\frac{16}{27} \pi h^3\\\\\frac{dV}{dt}=\frac{16}{9} \pi h^2\frac{dh}{dt} \\\\14=\frac{16}{9} \pi (5)^2 \frac{dh}{dt}\\\\\frac{dh}{dt}=0.1\ m/min[/tex]

b)

[tex]h=\frac{3}{8}d \\\\h=\frac{3}{8}(2r)\\\\h=\frac{3}{4}r\\\\\frac{dh}{dt}=\frac{3}{4} \frac{dr}{dt} \\\\\frac{dr}{dt}=\frac{4}{3} \frac{dh}{dt} \\\\\frac{dr}{dt}=\frac{4}{3} (0.1)\\\\\frac{dr}{dt}=0.133\ m/min \\[/tex]

Hence the height is changing at a rate of 0.1 m/min whine the radius is changing at a rate of 0.133 m/min.

Find out more at: https://brainly.com/question/15309070

Otras preguntas