sidda62
contestada

If the graph of function g is 6 units below the graph of function f, which could be function g? f(x) = -2x + 7 A. g(x) = -2x + 1 B. g(x) = -2x − 6 C. g(x) = -6x + 7 D. g(x) = -2x + 20

Respuesta :

Answer:

A. [tex]g(x)=-2x+1[/tex]

Step-by-step explanation:

Given:

[tex]f(x)=-2x+7[/tex]

The function [tex]f(x)[/tex] is shifted 6 units below which forms the function [tex]g(x)[/tex]

To find the function [tex]g(x)[/tex], we apply the following translation rules:

[tex]f(x)\rightarrow f(x)+c[/tex]

If [tex]c>0[/tex] the function [tex]f(x)[/tex] shifts [tex]c[/tex] units up.

If [tex]c<0[/tex] the function [tex]f(x)[/tex] shifts [tex]c[/tex] units down.

Since the function [tex]f(x)[/tex] is shifting 6 units below, thus value of [tex]c<0[/tex] which is taken as  -6.

The translation occurring here is given by:

[tex]f(x)\rightarrow f(x)-6[/tex]

Thus,

[tex]g(x)=f(x)-6[/tex]

Substituting [tex]f(x)=-2x+7[/tex]

[tex]g(x)=-2x+7-6[/tex]

∴ [tex]g(x)=-2x+1[/tex]