The standard cell potential (E°cell) for the reaction below is +0.63 V. The cell potential for this reaction is ________ V when [ Zn2+] = 3.5 M and [Pb2+] = 2.0⋅10−4 M.
Pb2+ (aq) + Zn (s) → Zn2+ (aq) + Pb (s)
A) 0.84
B) 0.76
C) 0.50
D) 0.63
E) 0.39

Respuesta :

Answer : The cell potential for this reaction is 0.50 V

Explanation :

The given cell reactions is:

[tex]Pb^{2+}(aq)+Zn(s)\rightarrow Zn^{2+}(aq)+Pb(s)[/tex]

The half-cell reactions are:

Oxidation half reaction (anode):  [tex]Zn\rightarrow Zn^{2+}+2e^-[/tex]

Reduction half reaction (cathode):  [tex]Pb^{2+}+2e^-\rightarrow Pb[/tex]

First we have to calculate the cell potential for this reaction.

Using Nernest equation :

[tex]E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Zn^{2+}]}{[Pb^{2+}]}[/tex]

where,

F = Faraday constant = 96500 C

R = gas constant = 8.314 J/mol.K

T = room temperature = [tex]25^oC=273+25=298K[/tex]

n = number of electrons in oxidation-reduction reaction = 2

[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +0.63 V

[tex]E_{cell}[/tex] = cell potential for the reaction = ?

[tex][Zn^{2+}][/tex] = 3.5 M

[tex][Pb^{2+}][/tex] = [tex]2.0\times 10^{-4}M[/tex]

Now put all the given values in the above equation, we get:

[tex]E_{cell}=(+0.63)-\frac{2.303\times (8.314)\times (298)}{2\times 96500}\log \frac{3.5}{2.0\times 10^{-4}}[/tex]

[tex]E_{cell}=0.50V[/tex]

Therefore, the cell potential for this reaction is 0.50 V