A model rocket has upward velocity v(t) = 10t2 ft/s, t seconds after launch. Use the interval [0, 6] with n = 6 and equal subintervals to compute the following approximations of the distance the rocket traveled. (Round your answers to two decimal places.
(a) Left-hand sum = _____ ft
(b) Right-hand sum = _____ ft
(c) average of the two sums = ______ ft

Respuesta :

Answer:

a)550

b)910

c)730

Step-by-step explanation:

The given model is

[tex]v(t) = 10t^2 ft/s[/tex]

Use the interval [0,6], with n=6 rectangles

Then, the interval width is

[tex]\Delta t = \frac{b-a}{n}[/tex]

[tex]\Delta t = \frac{6-0}{6}[/tex]= 1

so, the sub intervals are

[0,1], [1,2], [2,3], [3,4],[4,5],[5,6]

Now evaluating the function values

[tex]f(t_0)= f(0) = 0[/tex]

[tex]f(t_1)= f(1) = 10[/tex]

[tex]f(t_2)= f(2) = 40[/tex]

[tex]f(t_3)= f(3) = 90[/tex]

[tex]f(t_4)= f(4) = 160[/tex]

[tex]f(t_5)= f(5) = 250[/tex]

[tex]f(t_6)= f(6) = 360[/tex]

a) left hand sum is

L_6 = [tex]\Delta t [f(t_0)+ f(t_1)+f(t_2)+f(t_3)+f(t_4)+f(t_5)][/tex]

=[tex]1 [0+ 10+40+90+160+250][/tex]

= 550

b) right hand sum

R_6 = [tex]\Delta t [ f(t_1)+f(t_2)+f(t_3)+f(t_4)+f(t_5)+f(t_6)][/tex]

= [tex]1 [10+40+90+160+250+360][/tex]

= 910

c) average of two sums is

[tex]\frac{L_5+R_5}{2}[/tex]

= [tex]\frac{550+910}{2}[/tex]

=730