Answer:
Part A:
[tex]n=8.85*10^{28}m^{-3}[/tex]
Part B:
[tex]Electron Mobility=3.03*10^{-3} m^2/V[/tex]
Explanation:
Part A:
To calculate the number of free electrons n we use the following formula::
n=1.5N-Au
Where N-Au is number of gold atoms per cubic meter
[tex]N-Au=\frac{Density*Avogadro Number}{atomic weight}[/tex]
[tex]Density = 19.32g/cm^3[/tex]
[tex]Avogadro Number=6.02*10^{23} atoms/mol[/tex]
[tex]Atomic weight=196.97g/mol[/tex]
So:
[tex]n=1.5*\frac{Density*Avogadro Number}{atomic weight}[/tex]
[tex]n=1.5*\frac{19.32*6.02*10^{23}}{196.97}[/tex]
[tex]n=8.85*10^{28}m^{-3}[/tex]
Part B:
[tex]Electron Mobility=\frac{Elec-conductivity}{n * charge on electron}[/tex]
n is calculated above which is 8.85*10^{28}m^{-3}
Charge on electron=1.602*10^{-19}
Elec- Conductivity= 4.3*10^{7}
[tex]Electron Mobility=\frac{4.3*10^{7}}{ 8.85*10^{28} * 1.602*10^{-19}}[/tex]
[tex]Electron Mobility=3.03*10^{-3} m^2/V[/tex]