Respuesta :

Answer:

4. All of the values are not proportional except 2 values

5. All of the values are non-proportional

6. All of the values are proportional

7. The two variables are proportional when, (no. of pies ordered (one of the variables)) is ≥ 12 . but the two variables are non-proportional when, 0 < (no. of pies ordered (one of the variables))  < 12.

Step-by-step explanation:

4.All of  the values in table 4. are not proportional, except 2 since,

[tex]\frac {1}{17.25} = \frac{4}{70} \neq \frac{2}{35.50}  \neq \frac{3}{50.75}[/tex]

although the units for all fractions is the same i.e.,  hour/dollar

5. All  of the  values in table 5 are non-proportional since,

[tex]\frac {1}{37} \neq \frac {2}{73} \neq \frac {3}{109} \neq  \frac{4}{145}[/tex]

although units for all the fractions are the same. i. e., hour/no. of pages

6. All  of the values of the table 6. are proportional, since,

[tex]\frac {1}{2.75} = \frac {2}{5.5} = \frac {3}{8.25} = \frac {4}{11}[/tex]

and all of the fractions  have same unit i. e.,   number of lunches/dollar

7. If no, of pies ordered is less than a dozen, then the cost is given by,

 y = 5 + 4.5x    [y in $, where x is the no. of pies ordered and 0 < x < 12]

clearly, y is not proportional to x.

The table of some values is given by,

   x          y

   1          $ 9.5

   2          $  14

   3          $ 18.5                         etc.

If no, of pies ordered ≥ 12, then the cost is given by,

   m = 4.5n [m in $, where, n is  no. of pies ordered and n ≥ 12]

clearly, m is proportional to n

The table of some values is given by,

  n               m

  12             $ 54

  13              $ 58.5            

  14              $ 63                      etc.