Respuesta :

Answer:

[tex]z=36[/tex]

Step-by-step explanation:

According to the question,

[tex]x[/tex]∝[tex]y^3[/tex]          .......(1)

[tex]y[/tex]∝[tex]\sqrt{z}[/tex]    .......(2)

From equation 1,2 let constant of proportionality be [tex]k1,k2[/tex] respectively.

⇒[tex]x=k1(y^3)[/tex]            .......(3)

⇒[tex]y=k2(\sqrt{z} )[/tex]    .......(4)

From the above equations putting 4 into 3,

[tex]x=k1((k2\sqrt{z})^3) =k1.k2^3.(\sqrt{z})^3[/tex]

Let the new constant to the above equation be [tex]k3[/tex],

[tex]x=k3(\sqrt{z})^3[/tex]

Given,if x=1, when z=4

[tex]1=k3(\sqrt{4} )^3=k3(8)[/tex]

⇒[tex]k3=\frac{1}{8}[/tex]

Now if x=27, then z=?

[tex]27=\frac{1}{8} (\sqrt{z} )^3[/tex]

⇒[tex](\sqrt{z} )^3=27(8)[/tex]

⇒[tex]\sqrt{z}=3(2)=6[/tex]

[tex]z=36[/tex]

Answer:B, y=kx^3/square root z

Step-by-step explanation:on edg