Answer:
The given equation has two solutions i.e [tex]\frac{-1+\sqrt{13} }{3}[/tex] , [tex]\frac{-1-\sqrt{13} }{3}[/tex]
Step-by-step explanation:
The given expression as :
3 x² + 2 x - 4
For the quadratic equation in the form of a x² + b x + c , the value of x
x = [tex]\frac{-b\pm \sqrt{b^{2}-4\times a\times c}}{2\times a}[/tex]
Or, x = [tex]\frac{-2\pm \sqrt{2^{2}-4\times 3\times (-4)}}{2\times 3}[/tex]
Or, x = [tex]\frac{-2\pm \sqrt{4 + 48}}{6}[/tex]
or, x = [tex]\frac{-2\pm \sqrt{52}}{6}[/tex]
∴ x = [tex]\frac{-1\pm \sqrt{13}}{3}[/tex]
Or, x = [tex]\frac{-1+\sqrt{13} }{3}[/tex] , [tex]\frac{-1-\sqrt{13} }{3}[/tex]
Hence The given equation has two solutions i.e [tex]\frac{-1+\sqrt{13} }{3}[/tex] , [tex]\frac{-1-\sqrt{13} }{3}[/tex] Answer