Answer:
The value of Cos 2a is - ([tex]\frac{119}{169}[/tex] ) .
Step-by-step explanation:
Given as
Tan a = [tex]\frac{12}{5}[/tex]
Now, ∵ Tan Ф = [tex]\dfrac{\textrm Perpendicular}{\textrm Base}[/tex]
So, Tan a = [tex]\dfrac{\textrm Perpendicular}{\textrm Base}[/tex]
Or, [tex]\dfrac{\textrm Perpendicular}{\textrm Base}[/tex] = [tex]\frac{12}{5}[/tex]
Or, From Pythagoras Theorem
Hypotenuse² = perpendicular² + Base²
Or, Hypotenuse² = 12² + 5²
Or, Hypotenuse² = 144 + 25
Or, Hypotenuse² = 169
∴ Hypotenuse = [tex]\sqrt{169}[/tex] = [tex]\pm[/tex]13
Take Hypotenuse = 13
Now,∵ Cos 2Ф = Cos²Ф - Sin²Ф
So, Cos 2a = Cos²a - Sin²a
or , Cos 2a = 1 - 2 Sin²a ∵ Cos²a + Sin²a = 1
Or, Cos 2a = 1 - 2 ×( [tex]\dfrac{\textrm Perpendicular}{\textrm Hpotenuse}[/tex])²
Or , Cos 2a = 1 - 2 ×( [tex]\dfrac{\textrm 12}{\textrm 13}[/tex])²
Or, Cos 2a = 1 - 2 × ([tex]\frac{144}{169}[/tex])
Or, Cos 2a = ([tex]\frac{169-288}{169}[/tex])
∴ Cos 2a = - ([tex]\frac{119}{169}[/tex])
Hence the value of Cos 2a is - ([tex]\frac{119}{169}[/tex]) . answer