contestada



A chemist has been tracking the amount of bacteria grown over a period of days(x). The chemist's data is shown in the table. What is the inverse function of the chemist's exponential function shown in the table?

A chemist has been tracking the amount of bacteria grown over a period of daysx The chemists data is shown in the table What is the inverse function of the chem class=

Respuesta :

Answer:[tex]f'(x)=log_{4}x[/tex]

Step-by-step explanation:

Lets first identify the function using the given data.

Clearly we can see the trend in the data.

The value of the function [tex]f(x)[/tex] is [tex]4^{x}[/tex]

So,[tex]f(x)=4^{x}[/tex]

Now we find the inverse of the function.

Let [tex]f'(x)[/tex] be the inverse function.

Now substitute [tex]f'(x)[/tex] in the place of [tex]x[/tex] and [tex]x[/tex] in the place of [tex]f(x)[/tex] in the above equation.

So,[tex]x=4^{f'(x)}[/tex]

Applying logarithm on both sides,

[tex]ln(x)=f'(x)ln(4)[/tex]

[tex]f'(x)=log_{4}x[/tex]