Respuesta :

Answer:

The given polynomial f(x) can be factorized as [tex](x^3+4x-5) = (x-1) \times  (x +5)[/tex]

Step-by-step explanation:

Here, the given function is: [tex]f(x)=x^3+4x-5[/tex]

Now If we try and put any arbitrary value say x = 1, we get

[tex]f(1)=(1)^3+4(1)-5  = 5- 5  = 0[/tex]  , or f(1) = 0

⇒ x =1 is the zero of the  given polynomial.

(x-1) is the ROOT of the Polynomial.

Now, dividing the polynomial, with this root, we get:

[tex]\frac{x^3+4x-5}{(x-1)}  = (x +5)\\\implies  (x^3+4x-5) = (x-1) \times  (x +5)[/tex]

(x+5) is the another ROOT of the Polynomial.

So, the given polynomial p(x) has two zeroes 1 and -5.

Hence, the given polynomial f(x) can be factorized as [tex](x^3+4x-5) = (x-1) \times  (x +5)[/tex]