Answer:
The dimensions of a building on the drawing are
[tex]8\frac{3}{14}\ in\ by\ 7\frac{1}{42}\ in[/tex]
Step-by-step explanation:
we know that
The scale of the drawing is
[tex]\frac{1}{42}\ \frac{in}{ft}[/tex]
That means --->1 inch in the drawing represent 42 feet in the actual
so
using proportion
Part a) Find out the dimension of a building on the drawing if the dimension on the actual is 345 ft
[tex]\frac{1}{42}\ \frac{in}{ft}=\frac{x}{345}\ \frac{in}{ft}\\\\x=\frac{345}{42}\ in\\\\x=\frac{115}{14}\ in[/tex]
Convert to mixed number
[tex]\frac{115}{14}\ in=\frac{112}{14}+\frac{3}{14}=8\frac{3}{14}\ in[/tex]
Part b) Find out the dimension of a building on the drawing if the dimension on the actual is 295 ft
[tex]\frac{1}{42}\ \frac{in}{ft}=\frac{x}{295}\ \frac{in}{ft}\\\\x=\frac{295}{42}\ in[/tex]
Convert to mixed number
[tex]\frac{295}{42}\ in=\frac{294}{42}+\frac{1}{42}=7\frac{1}{42}\ in[/tex]
therefore
The dimensions of a building on the drawing are
[tex]8\frac{3}{14}\ in\ by\ 7\frac{1}{42}\ in[/tex]