The midpoint between (2,-5) and (4, -7) is Option D.(3-6)
Step-by-step explanation:
Given:
Points (2,-5) and (4, -7)
To Find:
Midpoint of the points=?
Solution:
The midpoint that lies between the two points is given by
[tex](x_m, y_m) = (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})[/tex]
Where
[tex](x_m, y_m)[/tex]= coordinates of the midpoint
[tex](x_1, y_1)[/tex]= coordinates of the first point
[tex](x_2, y_2)[/tex]= coordinates of the second point
we have,
[tex]x_1= 2[/tex]
[tex]y_1= -5[/tex]
[tex]x_2= 4[/tex]
[tex]y_2= -5[/tex]
Substituting the values in the mid point formula,
[tex](x,y)=(\frac{(2+4)}{2},\frac{(-5-7)}{2})[/tex]
[tex](x,y)=(\frac{(6)}{2},\frac{(-12)}{2})[/tex]
(x,y)=(3,-6)