A trapezoid has coordinates of (-5, -3), (-2, 5), (2, 5), and (5, -3). What is the approximate perimeter of the trapezoid?

Round your answer to the nearest whole number (number that is not a decimal).

Respuesta :

Answer:

The approximate perimeter of the trapezoid is 31 units

Step-by-step explanation:

step 1

Plot the trapezoid

Let

A(-5, -3), B(-2, 5), C(2, 5), and D(5, -3)

see the attached figure

step 2

Find the perimeter of trapezoid

we know that

The perimeter of trapezoid is equal to

[tex]P=AB+BC+CD+AD[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Find the distance AB

we have

[tex]A(-5, -3),B(-2, 5)[/tex]

substitute in the formula

[tex]d=\sqrt{(5+3)^{2}+(-2+5)^{2}}[/tex]

[tex]d=\sqrt{(8)^{2}+(3)^{2}}[/tex]

[tex]d_A_B=\sqrt{73}\ units[/tex]

Find the distance BC

we have

[tex]B(-2, 5),C(2, 5)[/tex]

substitute in the formula

[tex]d=\sqrt{(5-5)^{2}+(2+2)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(4)^{2}}[/tex]

[tex]d_B_C=4\ units[/tex]

Find the distance CD

we have

[tex]C(2, 5),D(5, -3)[/tex]

substitute in the formula

[tex]d=\sqrt{(-3-5)^{2}+(5-2)^{2}}[/tex]

[tex]d=\sqrt{(-8)^{2}+(3)^{2}}[/tex]

[tex]d_C_D=\sqrt{73}\ units[/tex]

Find the distance AD

we have

[tex]A(-5, -3),D(5, -3)[/tex]

substitute in the formula

[tex]d=\sqrt{(-3+3)^{2}+(5+5)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(10)^{2}}[/tex]

[tex]d_A_D=10\ units[/tex]

step 3

Find the perimeter

[tex]P=AB+BC+CD+AD[/tex]

substitute the values

[tex]P=\sqrt{73}+4+\sqrt{73}+10[/tex]

[tex]P=31\ units[/tex]

Ver imagen calculista