Respuesta :

Answer:

Table D

Step-by-step explanation:

we know that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]y/x=k[/tex] or [tex]y=kx[/tex]

In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin

Verify each case

Table A

For x=1, y=3

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=3/1=3[/tex]

For x=2, y=9

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=9/2=4.5[/tex]

the values of k are different

therefore

The table A not represent a direct variation

Table B

For x=1, y=-5

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=-5/1=-5[/tex]

For x=2, y=5

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=5/2=2.5[/tex]

the values of k are different

therefore

The table B not represent a direct variation

Table C

For x=1, y=-18

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=-18/1=-18[/tex]

For x=2, y=-9

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=-9/2=-4.5[/tex]

the values of k are different

therefore

The table A not represent a direct variation

Table D

For x=1, y=4

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=4/1=4[/tex]

For x=2, y=8

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=8/2=4[/tex]

For x=3, y=12

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=12/3=4[/tex]

All the values of k are equal

therefore

The table D represent a direct variation or proportional relationship

The linear equation is [tex]y=4x[/tex]