Answer:
The value of sin t is [tex]\frac{7}{25}[/tex]
Step-by-step explanation:
Given as :
cos (t) = [tex]\frac{24}{25}[/tex]
Since sin² t + cos² t = 1
So, sin² t = 1 - cos² t
or, sin² t = 1 - ([tex]\frac{24}{25}[/tex])²
or, sin² t = [tex]\frac{25^{2} - 24^{2} }{25^{2} }[/tex]
Or, sin² t = [tex]\frac{625 - 576}{625}[/tex]
Or , sin² t = [tex]\frac{49}{625}[/tex]
Or, sin t = [tex]\sqrt{\frac{49}{625} }[/tex]
So, sin t = [tex]\frac{7}{25}[/tex]
Hence The value of sin t is [tex]\frac{7}{25}[/tex] Answer