Respuesta :
Answer:
Maximum area of rectangle = 50 sq unit
Step-by-step explanation:
A rectangle inscribed in a semi-circle of radius 5.
Please find attachment for figure.
Let length of rectangle be 2y and width be x .
In ΔOAB, ∠OBA = 90°
[tex]OB^2+AB^2=OA^2[/tex] (Using pythagoreous theorem)
[tex]y^2+x^2=5^2[/tex]
[tex]y^2=25-x^2[/tex]
[tex]y=\sqrt{25-x^2}[/tex]
Area of rectangle = Length x Width
A = 2y × x
[tex]A=2x\sqrt{25-x^2}[/tex]
Derivative above function w.r.t x
[tex]\dfrac{dA}{dx}=2\sqrt{25-x^2}-\dfrac{2x^2}{\sqrt{25-x^2}}[/tex]
For maxima/minima [tex]\dfrac{dA}{dx}=0[/tex]
[tex]2\sqrt{25-x^2}-\dfrac{2x^2}{\sqrt{25-x^2}}=0[/tex]
[tex]2x^2=25[/tex]
[tex]x=\dfrac{5}{\sqrt{2}}[/tex]
To check maximum/minima using double derivative test
[tex]\dfrac{d^2A}{dx^2}=\frac{2x\left(2x^{2}-75\right)}{\left(25-x^{2}\right)^{\frac{3}{2}}}[/tex]
At [tex]x=\dfrac{5}{\sqrt{2}}[/tex] , [tex]\dfrac{d^2A}{dx^2}=-8<0[/tex]
Hence, the area is maximum when width, [tex]x=\dfrac{5}{\sqrt{2}}[/tex] and [tex]y=5\sqrt{2}[/tex]
Maximum area of rectangle, A= 2xy
[tex]A_{max} = 2\cdot \dfrac{5}{\sqrt{2}}\cdot 5\sqrt{2}[/tex]
[tex]A_{max}=50[/tex]

Answer:
The area of the largest rectangle is 25 square units.
Step-by-step explanation:
It is given that the radius of the semicircle is [tex]r=5\texttt { unit}[/tex].
It is required to inscribe a rectangle of maximum area.
Consider a rectangle of sides [tex]x[/tex] and [tex]y[/tex] as shown in the given figure.
From the attached figure, [tex]AB=x[/tex] , [tex]OA=r[/tex] and [tex]OB=\dfrac {y}{2}[/tex].
Now, in the triangle OAB, apply Pythagoras theorem as,
[tex]OA^2=OB^2+AB^2\\\left (r^2 \right )=\left (\dfrac{y}{2} \right )^2+x^2\\25=\dfrac{y^2}{4}+x^2\\y=2\sqrt{25-x^2}[/tex]
So, the area of the rectangle will be,
[tex]A=xy\\A=x(2\sqrt{25-x^2})\\A=2x\sqrt{25-x^2}[/tex]
Differentiate the area with respect to [tex]x[/tex],
[tex]A=2x\sqrt{25-x^2}\\A'=2\sqrt{25-x^2}+2x(\dfrac{1}{2\sqrt{25-x^2}})(-2x)=0\\2\sqrt{25-x^2}=2x^2(\dfrac{1}{\sqrt{25-x^2}})\\25-x^2=x^2\\2x^2=25\\x=\dfrac{5}{\sqrt2}[/tex]
Differentiate the area twice as,
[tex]A'=2\sqrt{25-x^2}-(\dfrac{2x^2}{\sqrt{25-x^2}})\\A''=\dfrac{1}{\sqrt{25-x^2}}-4x\dfrac{1}{\sqrt{25-x^2}}+4x^3\dfrac{1}{({25-x^2)}^{3/2}}\\A''_{\left (x=\dfrac{5}{\sqrt2}\right )}=\dfrac{\sqrt2}{5}-4+\dfrac{\sqrt2}{5}\\A''_{\left (x=\dfrac{5}{\sqrt2}\right )}<0[/tex]
So, the double derivative of area function is negative and hence, the area will be maximum at [tex]x=\dfrac{5}{\sqrt2}\right[/tex].
Therefore, the maximum area of rectangle will be,
[tex]A=2x\sqrt{25-x^2}\\A=2\times \dfrac{5}{\sqrt2}\sqrt{25-\dfrac{25}{2}}\\A=25[/tex]
Therefore, the area of the largest rectangle is 25 square units.
For more details, refer the link:
https://brainly.com/question/14316282?referrer=searchResults
