If WZ is the perpendicular bisector of VY , what conclusion can you make?
VWZ=YWZ
VWZ=WVZ
VYW=YWV
WYZ=ZWV

Answer:
[tex]\triangle VWZ = \triangle YWZ[/tex]. Justification is given below.
Step-by-step explanation:
Given:
[tex]\angle WVZ = \angle WYZ[/tex]
WZ is the perpendicular bisector of VY.
∴[tex]\angle WZV = \angle WZY = 90\°\\and\\VZ = YZ[/tex]
In [tex]\triangle VWZ and \triangle YWZ[/tex]
[tex]\angle WVZ = \angle WYZ[/tex] Given
[tex]VZ = YZ[/tex]
[tex]\angle WZV = \angle WZY = 90\°[/tex]
∴ [tex]\triangle VWZ \cong \triangle YWZ[/tex] by ASA test
[tex]\triangle VWZ = \triangle YWZ[/tex]
Here the correspondence of the vertices of a triangle should be match hence the option is first one that is.
[tex]\triangle VWZ = \triangle YWZ[/tex]