Respuesta :

Answer:

[tex]f(x)=x-5[/tex]

Step-by-step explanation:

step 1

Find the slope m

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

we have the ordered pairs

(10,5) and (2,-3)

substitute the values

[tex]m=\frac{-3-5}{2-10}[/tex]

[tex]m=\frac{-8}{-8}[/tex]

[tex]m=1[/tex]

step 2

Find the equation of the line in slope intercept form

[tex]f(x)=mx+b[/tex]

we have

[tex]m=1[/tex]

[tex]point\ (10,5)[/tex]

substitute and solve for b

[tex]5=(1)(10)+b[/tex]

[tex]5=10+b[/tex]

[tex]b=-5[/tex]

The linear function is equal to

[tex]f(x)=x-5[/tex]

The linear function with the values [tex]f(10)=5[/tex] and [tex]f(2)=-3[/tex] is [tex]f(x)=x-5[/tex].

Step-by-step explanation:

Given information:

The values of a liner function

[tex]f(10)=5[/tex]

and

[tex]f(2)=-3[/tex]

So, we can write the slope as:

[tex]m=\frac{y_2-y_1}{x_2-x_1} \\[/tex]

On, putting the values:

[tex]m=\frac{-3-5}{2-10} \\m=1[/tex]

Point (10,5)

Now ,substitute the values in the linear equation:

[tex]\text {y=mx+b}[/tex]

where, m is the slope.

[tex]5=1 \times 10 + \text b\\\text b=-5[/tex]

Now put the values to get the required linear function.

So, the linear function with the values  [tex]f(10)=5[/tex] and [tex]f(2)=-3[/tex] will be [tex]f(x)=x-5\\[/tex]

For more information visit:

https://brainly.com/question/21107621?referrer=searchResults