Answer:
The resistance is [tex]7.47\times10^{6}\ \Omega[/tex].
Explanation:
Given that,
Power = 259 kV
Current = 429 A
Resistance [tex]R=0.71\times10^{9}\ Omega[/tex]
We need to calculate the current in each insulator
Using formula of current
[tex]I=\dfrac{P}{R}[/tex]
Put the value into the formula
[tex]I=\dfrac{259\times10^{3}}{0.71\times10^{9}}[/tex]
[tex]I=3.64\times10^{-4}\ A[/tex]
So all 95 insulators are in parallel
We need to calculate the resistance
Using formula of resistance
[tex]\dfrac{1}{R}=\sum_{i=1}^{95}\dfrac{1}{R_{i}}[/tex]
Put the value into the formula
[tex]\dfrac{1}{R}=\dfrac{95}{0.71\times10^{9}}[/tex]
[tex]\dfrac{1}{R}=1.338\times10^{-7}[/tex]
[tex]R=\dfrac{1}{1.338\times10^{-7}}[/tex]
[tex]R=7473841.5=7.47\times10^{6}\ \Omega[/tex]
Hence, The resistance is [tex]7.47\times10^{6}\ \Omega[/tex].