Respuesta :
Answer:
(a). The change in the protons electric potential is 0.639 kV.
(b). The change in the potential energy of the proton is [tex]1.022\times10^{-16}\ J[/tex]
(c). The work done on the proton is [tex]-8\times10^{-18}\ J[/tex].
Explanation:
Given that,
Speed [tex]v= 3.50\times10^{5}\ m/s[/tex]
Initial potential V=100 V
Final potential = 150 V
(a). We need to calculate the change in the protons electric potential
Potential energy of the proton is
[tex]U=qV=eV[/tex]
Using conservation of energy
[tex]K_{i}+U_{i}=K_{f}+U_{f}[/tex]
[tex]\dfrac{1}{2}mv_{i}^2+eV_{i}=\dfrac{1}{2}mv_{f}^2+eV_{f}[/tex]
[tex]]\dfrac{1}{2}mv_{i}^2-]\dfrac{1}{2}mv_{f}^2=e(V_{f}-V_{i})[/tex]
[tex]\dfrac{1}{2}mv_{i}^2-]\dfrac{1}{2}mv_{f}^2=e\Delta V[/tex]
[tex]\Delta V=\dfrac{m(v_{i}^2-v_{f}^2)}{2e}[/tex]
Put the value into the formula
[tex]\Delta V=\dfrac{1.67\times10^{-27}(3.50\times10^{5}-0)^2}{2\times1.6\times10^{-19}}[/tex]
[tex]\Delta V=639.2=0.639\ kV[/tex]
(b). We need to calculate the change in the potential energy of the proton
Using formula of potential energy
[tex]\Delta U=q\Delta V[/tex]
Put the value into the formula
[tex]\Delta U=1.6\times10^{-19}\times639.2[/tex]
[tex]\Delta U=1.022\times10^{-16}\ J[/tex]
(c). We need to calculate the work done on the proton
Using formula of work done
[tex]\Delta U=-W[/tex]
[tex]W=q(V_{2}-V_{1})[/tex]
[tex]W=-1.6\times10^{-19}(150-100)[/tex]
[tex]W=-8\times10^{-18}\ J[/tex]
Hence, (a). The change in the protons electric potential is 0.639 kV.
(b). The change in the potential energy of the proton is [tex]1.022\times10^{-16}\ J[/tex]
(c). The work done on the proton is [tex]-8\times10^{-18}\ J[/tex].