Answer:
[tex]Re=1992.24[/tex]
Explanation:
Given:
vertical height of oil coming out of pipe, [tex]h=25\ m[/tex]
diameter of pipe, [tex]d=0.1\ m[/tex]
length of pipe, [tex]l=50\ m[/tex]
density of oil, [tex]\rho = 900\ kg.m^{-3}[/tex]
viscosity of oil, [tex]\mu=1\ Pa.s[/tex]
Now, since the oil is being shot verically upwards it will have some initial velocity and will have zero final velocity at the top.
Using the equation of motion:
[tex]v^2=u^2-2gh[/tex]
where:
v = final velocity
u = initial velocity
Putting the respective values:
[tex]0^2=u^2-2\times 9.8\times 25[/tex]
[tex]u=22.136\ m.s^{-1}[/tex]
For Reynold's no. we have the relation as:
[tex]Re=\frac{\rho.u.d}{\mu}[/tex]
[tex]Re=\frac{900\times 22.136\times 0.1}{1}[/tex]
[tex]Re=1992.24[/tex]