Respuesta :
Answer : The enthalpy of combustion per mole of [tex]C_6H_{12}O_6[/tex] is -2815.8 kJ/mol
Explanation :
Enthalpy change : It is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as [tex]\Delta H^o[/tex]
The equation used to calculate enthalpy change is of a reaction is:
[tex]\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)][/tex]
The equilibrium reaction follows:
[tex]C_6H_{12}O_6(s)+6O_2(g)\rightleftharpoons 6CO_2(g)+6H_2O(l)[/tex]
The equation for the enthalpy change of the above reaction is:
[tex]\Delta H^o_{rxn}=[(n_{(CO_2)}\times \Delta H^o_f_{(CO_2)})+(n_{(H_2O)}\times \Delta H^o_f_{(H_2O)})]-[(n_{(C_6H_{12}O_6)}\times \Delta H^o_f_{(C_6H_{12}O_6)})+(n_{(O_2)}\times \Delta H^o_f_{(O_2)})][/tex]
We are given:
[tex]\Delta H^o_f_{(C_6H_{12}O_6(s))}=-1260kJ/mol\\\Delta H^o_f_{(O_2(g))}=0kJ/mol\\\Delta H^o_f_{(CO_2(g))}=-393.5kJ/mol\\\Delta H^o_f_{(H_2O(l))}=-285.8kJ/mol[/tex]
Putting values in above equation, we get:
[tex]\Delta H^o_{rxn}=[(6\times -393.5)+(6\times -285.8)]-[(1\times -1260)+(6\times 0)]=-2815.8kJ/mol[/tex]
Therefore, the enthalpy of combustion per mole of [tex]C_6H_{12}O_6[/tex] is -2815.8 kJ/mol