Fully answer the question below

Answer:
The second expression is not equivalent to the initial expression.
Step-by-step explanation:
Given: [tex]$ \frac{1}{5}g - \frac{1}{10} -g + 1\frac{3}{10}g - \frac{1}{10} $[/tex].
Clubbing the co-efficient of g and constant terms. we get:
[tex]$ \frac{1}{10}g + (-1)g + 1\frac{3}{10}g + -\frac{1}{10} + - \frac{1}{10} $[/tex]
This is the first step and is equivalent to the initial expression.
Now, Simplifying the above expression we have:
[tex]$ \frac{1}{5}g - g + \frac{13}{10}g + (- \frac{2}{10} )$[/tex]
⇒ [tex]$ ( \frac{1}{5} - 1 + \frac{13}{10}) g $[/tex]
⇒ [tex]$ g (\frac{2 -10 + 13}{10}) - \frac{2}{10} $[/tex]
⇒[tex]$ \frac{5}{10}g - \frac{2}{10} $[/tex]
⇒ [tex]$ \frac{1}{2}g - \frac{1}{5} $[/tex]
This is not the second step done by him. Not equivalent to the initial step.