There are 4 positive integers a,b,c,d, such that 4cos(x)cos(2x)cos(4x) = cos(ax)+cos(bx)+cos(cx)+cos(dx) for all values of x. Find a+b+c+d.?

Respuesta :

Answer:

5

Step-by-step explanation:

[tex]4 cos(x)cos (2x)cos(4x)\\=2 cosx (2 cos (4x)cos (2x))\\=2 cos x (cos \frac{4x+2x}{2}+cos \frac{4x-2x}{2})\\=2 cos x(cos 3x+cos x)\\=2cos 3xcos x+2 cos ^2x\\=cos( \frac{3x+x}{2})+cos \frac{3x-x}{2}+cos 2x+1\\=cos2x+cos x+cos 2x+cos 0x\\a=2,b=1,c=2,d=0\\a+b+c+d=2+1+2+0=5[/tex]