Conduct the following test at the alpha equals0.05 level of significance by determining​

(a) the null and alternative​ hypotheses,
(b) the test​ statistic, and​
(c) the critical value.

Assume that the samples were obtained independently using simple random sampling. Test whether p 1 not equals p 2 . Sample data are x 1 equals 28 ​, n 1 equals 255 ​, x 2 equals 36 and n 2 equals 302 .

​(a) Choose the correct null and alternative hypotheses below.

A. Upper H 0 : p 1 equals p 2 versus Upper H 1 : p 1 greater than p 2 Your answer is correct.
B. Upper H 0 : p 1 equals 0 versus Upper H 1 : p 1 not equals 0
C. Upper H 0 : p 1 equals p 2 versus Upper H 1 : p 1 not equals p 2
D. Upper H 0 : p 1 equals p 2 versus Upper H 1 : p 1 less than p 2 ​
(b) Determine the test statistic. z0equals nothing ​(Round to two decimal places as​ needed.)

Respuesta :

Answer:

z=0.6074

Step-by-step explanation:

Given that we have to Conduct the following test at the alpha equals0.05 level of significance by determining​

Test whether p 1 not equals p 2 .

Suitable hypotheses would be

B. Upper H 0 : p 1 equals 0 versus Upper H 1 : p 1 not equals 0

(Two tailed test at 5% level)

Group      I      II                total

n           255   305           557

x              28     36             64

p          0.1098  0.1180     0.1149

p difference = -0.0082

Std error for difference = [tex]\sqrt{\frac{0.1149*0.8851}{557} } \\=0.0135[/tex]

Test statistic Z = p diff/std error

= 0.6074

p =0.2718

Since p >alpha we accept H0

z=0.6074