Respuesta :

Answer:

[tex]B=52.9^o[/tex]

[tex]a=4.041\ mm[/tex]

[tex]b=5.344\ mm[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

The triangle ABC is a right triangle

we have that

[tex]AB=c=6.7\ mm[/tex]

[tex]AC=b\\BC=a[/tex]

[tex]A=37.1^o[/tex]

step 1

Find the length side b

The cosine of angle A is equal to divide the adjacent side angle A (side b) by the hypotenuse (side c)

so

[tex]cos(A)=\frac{b}{c}[/tex]

substitute the given values

[tex]cos(37.1^o)=\frac{b}{6.7}[/tex]

solve for b

[tex]b=cos(37.1^o)(6.7)[/tex]

[tex]b=5.344\ mm[/tex]

step 2

Find the length side a

The sine of angle A is equal to divide the opposite side angle A (side a) by the hypotenuse (side c)

so

[tex]sin(A)=\frac{a}{c}[/tex]

substitute the given values

[tex]sin(37.1^o)=\frac{a}{6.7}[/tex]

solve for a

[tex]a=sin(37.1^o)(6.7)[/tex]

[tex]a=4.041\ mm[/tex]

step 3

Find the measure of angle B

we know that

[tex]A+B=90^o[/tex] ----> by complementary angles

substitute the value of A

[tex]37.1^o+B=90^o[/tex]

[tex]B=90^o-37.1^o[/tex]

[tex]B=52.9^o[/tex]

Ver imagen calculista