Respuesta :

Answer:

  1. ∠1≅∠2-------------------------(Given)
  2. m∠1=m∠2-------------------(Definition of congruent angles)
  3. ∠ABP, ∠1 and ∠DCP,∠2 form linear pair---------------Linear pair
  4. m∠ABP+m∠1=180° and m∠DCP+m∠2=180°--------definition of linear pair
  5. ∠ABP≅∠DCP--------------------If equals are subtracted from equals, the remainders are equal
  6. AP≅DP----------------------------Given
  7. ΔABP≅ΔDCP-------------------AAS

Step-by-step explanation:

Given, ∠1≅∠2, ∠3≅∠4 and AP≅DP,

  • We know that,

        ∠1≅∠2(given)

     ⇒m∠1=m∠2(definition of congruent angles)

  • ∠[tex]ABP+[/tex]m∠1=180° and ∠[tex]DCP[/tex]+m∠2=180° (Linear Pair)

         180°=180°(Reflexive)

      ⇒m∠[tex]ABP+[/tex]m∠1=m∠[tex]DCP[/tex]+m∠2

          But  m∠1 =m∠2 (definition of congruent angles)

     ⇒m∠[tex]ABP+[/tex]m∠1=m∠[tex]DCP[/tex]+m∠1

        m∠[tex]ABP+[/tex]=m∠[tex]DCP[/tex] ( If equals are subtracted from equals, the remainders are equal)

  • [tex]AP[/tex]=[tex]DP[/tex](GIven)

Therefore, Δ[tex]ABP=[/tex]Δ[tex]DCP[/tex] (by AAS criteria)

condition are:

  1. m∠1=m∠2 (Angle)
  2. m∠[tex]ABP[/tex]=m∠[tex]DCP[/tex] (Angle)
  3. AP=DP (Side)