A bicycle wheel with a radius of 34 cm is given an angular acceleration of 2.64 rad/s62
by applying a force of 0.32 N on the edge of the wheel. What is the wheel's moment of inertia?

Respuesta :

Answer: [tex]0.041 kg m^{2}[/tex]

Explanation:

The bicycle wheel can be modeled as a hoop, which moment of inertia [tex]I[/tex] is:

[tex]I=mr^{2}[/tex] (1) Where [tex]m[/tex] is the mass and [tex]r[/tex] is the radius.

However, since we are given the applied force [tex]F[/tex] and angular acceleration [tex]\alpha[/tex], we can use the following equation:

[tex]rF=I \alpha[/tex] (2)

Where:

[tex]F=0.32 N[/tex]

[tex]\alpha=2.64 rad/s^{2}[/tex]

[tex]r=34 cm \frac{1 m}{100 cm}=0.34 m[/tex]

Isolating [tex]I[/tex]:

[tex]I=\frac{rF}{\alpha}[/tex] (3)

[tex]I=\frac{(0.34 m)(0.32 N)}{2.64 rad/s^{2}}[/tex] (4)

Finally:

[tex]I=0.041 kg m^{2}[/tex] This is the bicycle wheel moment of inertia