The velocity of a turtle is recorded at 1 minute intervals (in meters per second). Use the right-endpoint approximation to estimate the total distance the turtle travelled during the 5 seconds recorded.t (sec): 0 1 2 3 4 5V(t): 0.078 0.83 0.75 0.98 0.853 0.425

Respuesta :

Answer:

The total distance that the turtle traveled during the 5 seconds recorded is [tex]Distance \:traveled\approx 3.838\:\frac{m}{s}[/tex]

Step-by-step explanation:

To estimate distance traveled of an object moving in a straight line over a period of time, from discrete data on the velocity of the object, we use a Riemann Sum. If we have a table of values

[tex]\left\begin{array}{ccccccc}time\:=\:t_i&t_0=0&t_1&t_2&...&t_n\\velocity\:=\:v(t_i)&v(t_0)&v(t_1)&v(t_2)&...&v(t_n)\end{array}\right[/tex]

where [tex]\Delta t=t_i-t_{i-1}[/tex], then we can approximate the displacement on the interval [tex][t_{i-1},t_i][/tex] by [tex]v(t_{i}) \times\Delta t[/tex].

Therefore the distance traveled of the object over the time interval [tex][0,t_n][/tex] can be approximated by

[tex]Distance \:traveled\approx |v(t_1)|\Delta t+|v(t_2)|\Delta t+...+|v(t_n)|\Delta t[/tex]

This is the right endpoint approximation.

We are given a table of values for v(t)

[tex]\left\begin{array}{cccccccc}t(sec)&0&1&2&3&4&5\\v(t)&0.078&0.83&0.75&0.98&0.853&0.425\end{array}\right[/tex]

Applying the right endpoint approximation formula we get,

[tex]\Delta t = 1\sec[/tex]

[tex]Distance \:traveled\approx |v(t_1)|\Delta t+|v(t_2)|\Delta t+|v(t_3)|\Delta t+|v(t_4)|\Delta t+|v(t_5)|\Delta t\\\\Distance \:traveled\approx 0.83(1)+0.75(1)+0.98(1)+0.853(1)+0.425(1)\\\\Distance \:traveled\approx 3.838\:\frac{m}{s}[/tex]

The total distance that the turtle traveled during the 5 seconds recorded is [tex]Distance \:traveled\approx 3.838\:\frac{m}{s}[/tex]